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ON THE COMPLEXITY OF COVERING VERTICES BY FACES IN A PLANAR
GRAPH*

DANIEL BIENSTOCK" AND CLYDE L. MONMA"

Abstract. The pair (G, D) consisting of a planar graph G V, E) with n vertices together with a subset
of d special vertices D V is called k-planar if there is an embedding of G in the plane so that at most k
faces of G are required to cover all of the vertices in D. Checking 1-planarity can be done in linear-time
since it reduces to a problem of checking planarity of a related graph. We present an algorithm which given
a graph G and a value k either determines that G is not k-planar or generates an appropriate embedding
and associated minimum cover in O(ckn) time, where c is a constant. Hence, the algorithm runs in linear
time for any fixed k. The fact that the time required by the algorithm grows exponentially in k is to be
expected since we also show that for arbitrary k, the associated decision problem is strongly NP-complete,
even when the planar graph has essentially a unique planar embedding, d 0(n), and all facial cycles have
bounded length. These results provide a polynomial-time recognition algorithm for special cases of Steiner
tree problems in graphs which are solvable in polynomial time.
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1. Introduction. Recently, there has been a great deal of interest in solving the
Steiner tree problem in graphs. This problem is NP-complete even for planar grid
graphs [GJ1]. (See [GJ2] for an excellent introduction to the area of computational
complexity.) So recent work has centered on efficiently-solvable special cases and
heuristic methods; see [Wi] for a survey of work on this problem.

Throughout this paper we deal with undirected graphs of the form G (V, E),
where V is a set of n vertices and E is a set of edges connecting pairs of vertices. A
graph is called planar if it can be embedded in the plane. A graph G V, E) together
with d special vertices D V is called k-planar if there is a 131anar embedding of G
so that at most k faces of G are required to cover all of the vertices in D. Clearly, a
planar graph is the same as an n-planar graph. The planarity number of G is the
minimum k such that G is k-planar.

A recent paper by [EMV] presents an algorithm which solves the Steiner problem
in an arbitrary graph; their algorithm runs in polynomial time for k-planar graphs,
for any fixed k, with D being the vertices required to be in the Steiner tree. It is easy
to see that checking 1-planarity of G V, E) with special vertices D V is equivalent
to testing the planarity of the associated graph G*= (V*, E*), where V*= Vt.J {r}
and E* E [_J {(r, v)" v D}, and so can be done in linear time [HT2]. They leave as
an open question the complexity of testing k-planarity for fixed k->-2.

In 2, we present an algorithm which checks to see if a given (G, D) pair is
k-planar given a fixed embedding of G and if so, determines the planarity number of
G in O(ckn) time, when c is a constant. This is used in 3 to generate an appropriate
embedding of G and a cover of D by k or fewer faces, if possible, in O(ckn) time.
Hence, the algorithm runs in linear time for any fixed k. The fact that the time required
grows exponentially in k is to be expected as we show in 4 that for arbitrary k, the
associated decision problem is strongly NP-complete, even when the planar graph has
essentially a unique planar embedding, d O(n), and all facial cycles have bounded
length.
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In 5, we present an optimization algorithm which finds the minimum number
of faces required to cover all special vertices of a planar graph with a fixed embedding
in 2’/7) time. This exact algorithm is used to obtain a polynomial-time approximation
algorithm which is asymptotically optimal (i.e., the relative error converges to zero),
for the class of graphs we showed to be NP-complete in 4.

2. Testing k-planarity for a fixed embedding. Consider a fixed embedding of the
graph G (V, E). In this section we describe an algorithm that tests whether k faces
are sufficient to cover all special vertices of D in this particular embedding and, if so,
whether it determines the planarity number. This algorithm requires O(ckn) time for
some constant c, and is used as a subroutine in our k-planarity testing algorithm for
a variable embedding in the next section. We note that if G is three-vertex connected,
then G has essentially a unique embedding and so the results of this section apply.

Throughout this section, we assume that the embedding of G is fixed. We transform
the problem of covering D with faces into one of covering certain special faces as
follows. We transform each vertex of D into a polygon, that is, if v D has edges
el, e2," , em incident on it, we replace v by a polygon with vertices vl," ", vm and
edges (vl, v2),. ., (Vn, V); such that for 1-<_i -< m, ei becomes incident to vi (if the
degree of v is 2, the polygon is a face of length two). We will refer to the new graph
by G, and the set of faces enclosed by the new po)ygons will be called D.

Let G’= (V’, E’) denote the dual graph of G. The vertices of G’ will be called
points. The set of points of G’ corresponding to D will be called D’. Now our problem
becomes that of testing whether G’ contains a set X of points such that

(i) XD’=,
(ii) X dominates D’,
(iii) IXI-_< k.

If such a set X exists, the corresponding set of faces will be called a face cover.
Let S denote the subgraph of G’ induced by all points in D’ and all points adjacent

to some point in D’. Now if S has more than k connected components, then certainly
no set X satisfying (i)-(iii) exists. Hence assume otherwise. We have the following
result.

LEMMA 1. If a set X satisfying (i)-(iii) exists, the diameter of every connected
component of S is at most O(k).

Proofi Aiming for a contradiction, let C be a connected component of S with
diameter larger than 8k + 6, and let p f, f2, ",f be such a diameter. There are two
cases.

(i) IP ( D’] >- 3(k+ 1). By construction, no point of D’ is adjacent to another
point of D’. Let p D’-- {So, s, , s,} with labeling to reflect the ordering of these
points in p, and set Z--{So, s3, s6,’’ ", s3i, s3+,’’ "}. Then at least IZ] points are
needed to dominate Z. But this is a contradiction since IZ] >_-3(k + 1)/3--k + 1.

(ii) I f D’I <3(k+ 1). By construction, every point of S-D’ is adjacent to at
least one point of D’. Let p- D’= {go, , g} with labeling to reflect the ordering of
these points in p, and set Y {go, gs, glo, , gs, gs+, "}. For each i, set d to be
an arbitrary point of D’ adjacent to gs. Clearly, if # j, then d # d. Further, a different
point of S-D’ is required to dominate each point di. But the number of such points
is at least (Sk + 7- 3k- 2)= k + 1, again a contradiction. D

Our algorithms will exploit this bounded dual diameter structure. The computa-
tions take place in the primal graph. Now, if a graph has dual diameter t, then every
face is within distance of an arbitrary face. Algorithm XTND given below will, when
input an embedded planar graph H with n vertices, distinguished subset of faces E,
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and a constant L, test in linear time whether every face of H is within distance L of
the outer face. If so, XTND will compute a minimum face cover of E in time bounded
by 2L)n. In order to motivate XTND, we will describe it in three steps. First we
consider a special type of planar graph called a Halin graph. Next, we analyze the
structure ofbounded diameter planar graphs. Finally, we describe XTND in the general
case.

2.1. Halin graphs. An embedded planar graph H is called a Halin graph if its
dual has a dominating set of cardinality one. Assume that the corresponding face of
H is the outer face. Without loss of generality, the outer facial cycle C of H is simple.
For if v is a multiple vertex of C, let el (Ul, v) and e2 (v, u2) be two consecutive
edges of C. Then we subdivide el and e2 by adding vertices Wl and w2, and add the
edge (Wl, w) embedded in the outer face. Clearly the new graph is still Halin. This
type of operation is called a patching. Patchings can also be used to ensure that all
vertices in C have degree two or three. Similarly, if an interior vertex of H has degree
one, we can shrink the corresponding edge. The final graph H’ we obtain will be the
union of a cycle C and forest T embedded inside C with all leaves in C. Moreover,
from a face cover problem in H we obtain an equivalent problem in H’. Now we need
some definitions adapted from [CNP].

(1) A level 1 fan of H’ is a maximal set of paths pl, p2,..., Pn with a common
endpoint u C, which are otherwise disjoint, with opposite endpoint in C, and all
interior vertices of degree 2 in H’. The vertex u will be called the center of the fan.

(2) To define level fans, for > 1, we proceed as follows. As above, let Pl, , P,
be a maximal set of paths with common endpoint u C, otherwise disjoint, and with
degree two interior vertices. Suppose that for 1-<_ <= m, the endpoint of Pi different
from u is the center of a level ji fan, with ji =< t- 1, and that for some i, j t- 1. Then
the collection of paths and fans is called a level fan, and u its center. The fan whose
center is the endpoint of p is called the descendant fan of pi.

(3) If H’ is the union of a level 1 fan and C, we say H’ is a wheel.
THEOREM 2 (Adapted from [CNP]). The Halin graph H’ has at least one level 1

fan, and this fan can be constructed in linear time.

This theorem was used in [CNP] to construct a polynomial-time dynamic program-
ming algorithm for the traveling salesman problem in Halin graphs. We will make a
similar use here towards the face cover problem.

The intuition behind the approach is the following: we can describe the properties
of a fan using a bounded size list. This works because a level 1 fan has only two faces
that share edges with other fans. When constructing the list for a level fan, we only
need to look separately at the lists for the descendant fans. Thus if F is a level fan
with m descendant fans, the list for F can be constructed in O(m) time. Altogether
this translates into a linear time algorithm for solving the minimum face cover in H’.
Details are provided next.

If the forest T located inside C is not a tree, we reduce this to the single tree case
as follows. Let el, e2 be consecutive edges incident on vertices of C, that belong to
different trees. Then subdivide e by introducing a new vertex w, for i= 1, 2 and add
the edge (wl, w2). This new edge, together with the position of e between w and C,

1, 2, and a segment of C, bounds a "new" face of H’. We make this face forbidden
(that is, we cannot use it towards a cover).

Clearly this procedure does not change the problem and repeatedly applying it
will merge the forest into a single tree. Now if the outer face of H’ is in E, then any
internal face of H’ will cover it. On the other hand, if the outer face of H’ is not in
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E, then it will cover every other face of H’, and this is obviously optimal. Hence we
may assume, without loss of generality, that the outer face is forbidden.

Suppose f is a fan of H’ with center u and paths Pl," ", Pm in clockwise order.
For 1 < < m let/i be the continuation of Pi’, that is, a path of the form Pi, P’i ending
in C, such that p is obtained by following the most counterclockwise path out of p,
and for i> 1, p is obtained by following the most clockwise path out of Pi. The
endpoints of/$1 and/, in C are called the extremes of f. For 2 <-i <- m, denote by f
the region bounded by/1,/i and the corresponding section of C; and set Ei to be the
subset of faces of E contained in f. For i= 1, f consists of p and its descendant fan
f, while E1 is the subset of E contained in f. Finally, define l(f, i, a, ai) to be the
minimum number of internal faces needed to cover Ei, with the constraints that:

(1) If a 0, at least one face of E that has an edge on/ has not been covered.
(2) If a 1, (1) does not apply and at least one face with an edge of/ is used

in the cover.
(3) If al 2, neither (1) nor (2) apply.
(4) Similar considerations apply for ai 0, 1 or 2.
Algorithm XTND takes as input a graph H’ and keeps track of an auxiliary graph

A. At the start, A H’. In general, the vertices of A in its outer facial cycle will
correspond to fans of H’; these vertices will be labeled by the corresponding fans. The
output of Algorithm XTND is M, the minimum number of faces of H’ needed to cover
E. It is well known that repeatedly shrinking fans in a Halin graph eventually leads
to a wheel.

ALGORITHM XTND (HALIN CASE).
(1) Find a level 1 fan g in A. Let f be the corresponding fan in H’, with center

u, defining paths pl, , Pm and continuations/, , p. For 1 _-< i-< m, let
hi be the descendant fan ofPi, with si defining paths (if hi is a vertex, set s 0).
(a) Set l(f, 1, x, y) l(hi, Sl, x, y) for all x, y.
(b) For i> 1, suppose first that the face between Pi-1 and p is not in E, and

it is not forbidden. Then, for example,

l(f, i, 2,2)=min{min{l(f, i- 1, 2, x)+ 1
x,y

+l(hi, s,,y, 2)}, min {/(f, i-l,2, x)+l(hi, s,,y, 2)}}.
x>0,y>0

Similar formulas are used to compute all other parameters l(f, i,. ,. ), and
also when the face between Pi- and Pi is forbidden, or if it is in E.

(2) If g is a wheel in A, then let x be the face of H’ between/, and/.

(a) If xC=D, then M=minlmin{l(f,m,x,y)+l}, min {l(f,m,x,y)}}.
I. x,y x>O,y>O

(b) If x E, then M =min Imin {l(f, m, 1, y)}, min {l(f, m, x, 1)}.
(c) Stop and output the value of M.

(3) Otherwise, shrink g into a single vertex in the outer face of A, and go to (1).

Algorithm XTND clearly works correctly, and since the workload in finding and
shrinking fans in A is linear in the size of each fan, the total complexity is linear.

Notice that there is a last center r of a fan found in graph A. In fact, it is not
difficult to see that this vertex may be prescribed before running XTND, by choosing
fans with center u r whenever possible.
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There are two observations concerning the Halin case that will be very useful
later. First, let f be a fan of H’ with center u, and consider a set of contiguous faces
of f; that is, a set $ of faces off incident to u that appear consecutively as we travel
around f. Then if we want to force all faces in S to take the same value (that is, all
chosen or rejected), Algorithm XTND given above can still be used, almost verbatim,
to compute a minimum face cover of E. Similar considerations apply if all faces of S
are in E and covering any of them is interpreted as covering all of them. In both cases
we will refer to the set S as a split face.

Second, suppose el and e2 are edges incident to C that appear consecutively as
we travel around it. Then either at some point of the algorithm el and e2 will be part
of consecutive paths in a fan, or they will be part of the first and last paths in the very
last fan (a wheel) considered by the algorithm. In any case, let u be the center of the
fan, and let x be the face of H’ bounded by C and the paths containing el and e2.
Then we can split x by adding arbitrary edges incident to u. By making the set of
additional faces a split face, we obtain an equivalent problem. This new problem is
easily solved by using the same sequence of fans as before. The vertex u will be called
the ancestor of el and e2. This concludes the analysis of the Halin case.

2.2. Structure of bounded dual diameter graphs. We next investigate the structure
of planar graphs of dual diameter bounded by a certain constant, as it pertains to our
problem. Intuitively, our approach is as follows (this description is slightly incorrect
as we describe later). Given a plane graph of dual diameter at most L, by consecutively
"peeling" away layers of faces at a given distance from the outer face we will reach
a "central" graph after at most L layers. This central graph must be Halin; we use a
version of the algorithm in 2.1 where we now consider fans that are extended with
gridlike graphs with at most L rows, to solve the minimum face cover.

This description is incorrect in that there may be more than one "central" graph;
as we peel layers the graph may decompose arbitrarily. We deal with this difficulty by
using a special partial order on the components that we encounter recursively, and
proceed essentially as outlined in the previous paragraph. [Ba] introduces a class of
planar graphs called k-outerplanar. If a graph is k-outerplanar its dual diameter is at
least k; both concepts are somewhat related (in turn, the radius r of the graph [RS]
satisfies k- 1-< r -< k and these two parameters are closely related). [Ba] describes an
algorithm for decomposing k-outerplanar graphs. Our procedure UNWRAP for peeling
a bounded dual diameter graph is reminiscent of the one in [Ba], with some important
differences which are necessary to make our face cover algorithm work.

Let H be an n-vertex plane graph of dual diameter L, with outer facial cycle C.
Procedure UNWRAP proceeds as follows. First, any vertex of degree two and its two
incident edges can be replaced by a single edge. Also, the patch operation allows us
to assume that C contains no cutvertices. Further, if e is an edge incident to a vertex
of C, we can assume that both endpoints have degree three (using patchings or
expanding the endpoints into polygons, which will later be used as forbidden faces).
Next, we delete C, together with all edges incident to it. Then H will be split into
several connected components, each of which is a union of trees and maximal two-
connected graphs, joined in a treelike manner. If two of the two-connected graphs
share one vertex (a cutvertex) we can use the patch operation to obtain a larger graph.
Assume we carry this out as many times as necessary. The final two-connected graphs

In polynomial time, one can minimize over all embeddings the radius, the maximum dual distance
to the outer face, and the outerplanarity. However, minimizing the dual diameter is NP-hard IBM].
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will be called the height-1 islands (see Fig. 1). Clearly, if X is such an island, the
distance from an internal face of X to the outer face of X is at most L-1. Finally, it
is not difficult to see that a vertex in the outer face of X may be assumed to be adjacent
to at most one vertex not in X. Now we can recursively use UNWRAP with each
height-1 island to obtain height-2 islands. The procedure will terminate with at most
L-1 recursive calls. The top islands found (all of height at most L-1) will be Halin
graphs. The set of islands constitutes a partial order, which is constructed by UNWRAP
in time O(n). Having peeled away all of the layers we put them back together while
preserving the modifications that were introduced (i.e., all of the subdivisions and new
edges). It is in this graph H*; rather than H, that we apply XTND, after a few more
modifications described in the next section.

2.3. General case of XTND. We need one more piece of notation. The edges
joining the outer face of a height-/island I to the outer face of the height-(i 1) island
enclosing I are called the links of L Notice that if u is an endpoint of a link, then u
has degree at most four, by the construction used. The edges of H* that are not links
are called layer edges. Let R be the maximum dual distance to the outerface.

We first consider the simplest possible case, which we call the concentric case.
This arises when in every call to UNWRAP we discover precisely one island (and no
trees). That is, there is exactly one height-/island for each 1 =< =< R- 1 (see Fig. 2(a)).
Let K denote the height-(R- 1) island.

We modify H* as follows, if necessary. Let C* be the outer facial cycle of H*.
Then by subdividing layer edges and introducing some new link edges and edges inside
K, we can assume that every link edge is contained in a (unique) path from C* to the
interior of K, of length R, and similarly, every vertex in the outer facial cycle of K is
contained in such a path. Notice that the new edges will split faces, but all members
of a split face are "consecutive". For convenience, we still refer to the graph by H*.
H* has O(Rn) vertices. See Fig. 2(b), 2(c).

The final problem we obtain will have split faces, but an extremely simple structure.
This structure allows us to essentially use the same Algorithm XTND given before,
with the fan structure of K driving the computation. The main difference lies in that,
for every fan f of K, we simultaneously consider the entire "grid" of faces stretching

H

FIG.
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(
(o) (b)

(c) (d)

FIG. 2

from f to C (see Fig. 2(d)). Such a grid g will have arbitrarily many faces; however,
the "left" and "right" paths of it are incident to at most O(L) faces. The dynamic
programming recursion will consider all possibilities for each such face (whether chosen
or rejected for the cover, and in or not in the set E) in addition to the usual recursion
for the fan f Clearly there will be at most 2(L) possible states. Further, if a face f,
adjacent to the left path in g, and a face f2, incident to the right path in g, actually
correspond to the same split face, then we need only consider states of the dynamic
program where fl and f2 take the same value. It is easy to see that the overall procedure
takes time at most 2(L)n. This ends the description of the concentric case.

The general case is only slightly more complex, but we need to develop a bit more
machinery. We essentially construct a partial order on the various islands, and solve
a sequence of problems moving upwards in the partial order. The last (i.e., topmost)
problem to be solved will be of the concentric type described above.

As before, let H denote the overall graph, with outer facial cycle C. Choose an
arbitrary height-(L- 1) island K, with outer facial cycle C’. Let el, e2 be two consecutive
links joining C’ to the height-(L-2) island enclosing K, then as in the concentric case,
by splitting faces we can assume that for 1, 2, ei is contained in a length R- 1
simple path from C’ to C (notice that the length restriction says that pi does not
unnecessarily cut through islands). Then the wedge of el, e is the subgraph of H
bounded by p, P2 and the corresponding segments of C’, C. The wedges of K are
constructed for all consecutive links (see Fig. 3(a), 3(b)).

Proceeding recursively, let W be a wedge of some island; and J be a highest
island enclosed by W, say J of height i. The boundary of W will be made up of two
paths Pl, Pr, a segment of C and a segment x of at most two layer edges. Notice that
at most one link edge e joins J to x. By face splitting we can guarantee that e exists.
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(a) H

(C) WEDGES OF H2

(b) WEDGES OF H

FIG. 3

(d) WEDGES OF H:5

(e) WEDGE ORDER

Now we construct the wedges of J by including the link edges incident to vertices of
the outer face of J in paths of length to C, contained in W. The only exception is
the edge e which will define two special wedges called the boundary wedges. This
procedure is repeated recursively until we have computed wedges for all islands; trees
are handled in a similar way (see Figs. 3(c) and 3(d)). Notice that this procedure
constructs a partial order on a subset of islands and trees, with K at the top. We call
this order the wedge order of H (see Fig. 3(e)).

One fact is worth pointing out: through additional face splitting if necessary, for
every wedge W of a height-/island, the number of faces in the two boundary wedges
enclosed by W (if any) is altogether 2i.

Let H* denote the graph resulting from H after applying all the face splittings.
Then H* contains O(Ln) vertices, since each set of face splitting is caused by some
edge or island of H.

Our Algorithm XTND will operate on H* by moving up the wedge order. As
shown previously, E denotes the set of faces to be covered. Let I be an island at the
bottom of the order. I is contained inside some wedge W that belongs to the father
of I in the wedge order. Let I’ denote the union of I and all its wedges except for the
two boundary ones. I’ has the structure of a Halin graph with a grid glued to part of
its outer face. Then we compute the minimum number of internal faces of I’ needed
to cover all faces of E f’l I’; subject to each possible set of constraints corresponding
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BOUNDARY
WEDGES

(f) ANALYZE H 3

(h) REPLACE WEDGE OF H, CONTAINING H2
WITH GRID (SHADOWED)I ANALYZE

(g) REPLACE WEDGE OF H2 CONTAINING
H3 BY GRID (SHADOWED)I ANALYZE H2

FIG. 3. (Continued.)

to the patterns of the faces in the boundary wedges of I (i.e., whether chosen, left
uncovered or rejected; taking split faces into account, there are 2(L) such patterns).
Each of the computations is carried out much as in the case for Halin graphs.

Having carried out these computations, we replace W with a grid of width two,
remove I from the wedge order and proceed. For the general step, we again pick an
island from the bottom of the order and proceed as above. The only difference is that
we may encounter wedges of the island containing width two grids that correspond
to previously analyzed islands. But we have computed all relevant information for
such grids, and it is easy to work this into the dynamic programming recursion. Details
are left to the reader.

To analyze the complexity of the algorithm, notice that the total amount of work
done on each wedge W is at most 2(L)lwI. Hence, the complexity of the overall
algorithm is at most 20(L)n.

3. Testing k-planarity for a variable embedding. In this section, we return to the
original problem of testing whether an n-vertex planar graph G (V, E) containing a
distinguished subset of vertices D, admits an embedding in which D can be covered
with k or fewer faces.
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If G is three-connected, then we use Algorithm XTND of 2, after expanding D
into polygons. We show later how to reduce the one-connected case to that of
two-connectivity. In what follows, we will therefore assume G is two-connected.

The basic approach consists of decomposing G into (roughly) its triconnected
components [HT1]. These components are then inductively assembled into G, using
dynamic programming. Next we will give some definitions.

(1) A block of G is a connected subgraph H of G with two distinguished vertices
ul and U2 with the property that either G H, or all paths from H--{Ul, 112} to G-H
must pass through ul and u.. The vertices ul and uz willbe called the extremes of H.
Notice that since G is two-connected, then in any embedding of G, u and u2 will be
in a common face.

(2) Let H be a block of G with extremes u and u2. Let xyzw be a binary vector
of length four. Define F(H, xyzw) to be the minimum number of internal faces of H
needed to cover all vertices of D in H, taken over all embeddings of H with u and
u2 in the outer face, with the following constraints"

(i) If x =y 1 then there exist vertices /)1 and v in D fq H with /)1 /-)2 and
vi u for all i, j, that are not covered by the chosen internal faces of H, and
such that v is in one path from ul to u2 in the outer face of H, and v in
the other (in an optimal embedding that attains F(H, llzw)).

(ii) If x + y 1, exactly one of the paths from u to uz in the outer face of H
contains an uncovered vertex v D f) H, with v u, u2.

(iii) If x =y 0, then all vertices of D f)H, with the possible exception of u or
u2, are covered.

(iv) If z 0 (resp., 1), then ul e D is (resp., is not) covered.
(v) If w 0 (resp., 1), then u2 D is (resp., is not) covered.

(If, u D, then we always set z =0; similarly for u D. An embedding that attains
F(H, xyzw) will be denoted by E(H, xyzw).)

Notice that if in an optimal embedding of G, we use E(H, xyzw) to embed H,
where x +y >-1 and z + w >_-1, then any face of G-H used to cover the uncovered
vertices of H different from u and u will also cover u and u2. Hence, for x + y-> 1,
we reset F(H, xyOO)=minz.wF(H, xyzw). Therefore, the only 4-vectors we need to
keep track of are (0000), (1000), (1100), (0010), (0001) and (0011).

Every planar graph admits a recursive decomposition into blocks. This decomposi-
tion can be represented by a rooted tree, where each vertex corresponding to some
block of G, with the root representing G, and the leaves (essentially) correspond to

the triconnected components of G. For each block appearing in the tree, one of three
canonical ways of decomposing it occurs" a "Series" Case, a "Parallel" Case and a

"Messy" Case. Our Algorithm DYN for testing k-planarity proceeds upwards from
the leaves in the decomposition tree by computing the F parameters. Once a block B
has been analyzed, it is replaced in its parent by a small (bounded size) gadget (and
we keep track of the F parameters of B to compute those of its parent).

In order to simplify the description, we will present together Algorithm DYN and
the recursive decomposition structure. Further, the algorithm will be described recur-

sively (i.e., proceeding from the root down). The complexity is analyzed later.
Now suppose {Ul*, u*} is an arbitrary outset of G. Then in any embedding of G,

u* and u* will be in at least one common face, without loss of generality, the outer

face of G. Then testing k-planarity of G is achieved by regarding G as a block with

extremes u* and u*, and computing

min {F G, 0000), 1 + min {F G, xyzw x + y + z + w >- 1 }}.
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ALGORITHM DYN.
Input" a block H with extremes /1, //2
Output: all quantities F(H, xyzw)

There are three cases.
(1) Series Case. H has a cutvertex v. Then v# ui, i= 1, 2, and we write H-

H1LJ Ha, where ui E Hi, 1, 2, and H1 tq H2 v (see Fig. 4(a)). It is easy to compute
the F parameters for H in constant time from those of H1, H.. Refer to Appendix
A(1) for details.

(2) Parallel Case. Fix z and w. H is two-connected and {u, u2} is a cutset of H.
Write H UI H, where /-/ V1Hk--{U, U2} for each j k, and each is a block
with extremes {Ul, u2} (see Fig. 4(b)).

Intuitively, we proceed as follows. Suppose we select two blocks to act as "leftmost"
and "rightmost." In Appendix A(2) we show that it is possible to select either a "best"
embedding for each of the remaining "internal" blocks, or else a simple tie situation
may arise. In either case we are allowed to essentially ignore the detailed structure of
the internal blocks, and there is an efficient (linear time) procedure to pair them up
and obtain an optimal embedding (permutation and rotations of the internal blocks).
Further, we are always able to select a "best" leftmost and rightmost block. The overall
procedure runs in time linear in rn. Details are provided in Appendix A(2).

U

(a)

(b)

(C.2) THE ’1t M.M.B.’S CORRESPONDING
TO (C.I)

(C.t) SHADOWED GRAPHS ARE THREE CONNECTED

(C.5) GRAPH OBTAINED BY REPLACING
EACH M.M.B. WITH AN EDGE

FIG. 4
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(3) Messy Case. Cases (1) and (2) do not apply (see Fig. 4(c.1)). Then either (i)
there is a cutset {v, w}( (Ul, u}) of H, or (ii) H is three connected. In the latter case,
we can apply the results of 2 (by using forbidden faces, if necessary). So assume (i)
occurs.

Now for every outset {v, w} of H we can define the main block of {v, w} as the
union of all connected components of H-{v, w} not containing u or u, together
with {v, w}, if any such components exist. Now if for all cutsets { v, w} the main block
is empty, it is easy to see that H has a unique embedding with {u, u} restricted to
lie in the outer face, and therefore we are essentially in alternative (ii). Otherwise, the
main blocks can be ordered by inclusion; call those at the top the maximal main blocks
(see Fig. 4(c.2)), or m.m.b.’s for short. If we replace every m.m.b, by an edge, the
resulting graph H’ has a unique embedding with {u, u2} restricted to lie in the outer
face (Fig. 4(c.3)).

Our strategy is to analyze each m.m.b. W recursively first. Next we replace W by
an appropriate small gadget, attached to the rest of H by the extremes of W. We want
the gadget to "retain" all the relevant properties of W, while having essentially a
unique embedding (it will turn out that either we can find a "best" embedding for W,
or there are a few ties; the gadgets we use will take care of either case). In this manner,
we will reduce the problem on H to one where the embedding has been prescribed,
and we can use the results of 2. In summary, the approach is as follows:

(a) Analyze every m.m.b.
(b) For every m.m.b. W, compute its best embedding(s) and replace W with a

small gadget. We will keep track of a weight corresponding to W that describes
the cost of "internal" faces of W.

(c) Compute each parameter F for the resulting graph/, and to each, add the
sum of the weights of the m.m.b.’s to obtain the F parameters of H.

Details are provided in Appendix A(3). The overall complexity of this case will
be, at most, 2klI.

This concludes the description of Algorithm DYN. An efficient implementation
of DYN would first compute the block decomposition. This is accomplished by using
the algorithm in [HT1] to decompose a graph into its "split components". This
algorithm is easily modified to output the decomposition tree in linear time, with each
block labeled series, parallel or messy (in the messy case the decomposition is into
m.m.b.’s). If v is a vertex of the tree that represents a block W, at v we store the graph
W’ resulting from W by replacing each of its children with an edge. The overall space
required is linear. Finally, we "force" the original extremes u*, u2* chosen for G to
lie in the outer face by adding at the start the edge (u*, u*) if necessary.

Having computed the decomposition, we proceed upwards with DYN. If W’ is
the graph stored at some vertex of the tree, the work involved in analyzing W’ (when
we reach it)is o(lw’l) in the series and parallel cases, and at most 20kIw’ in the
messy case. Thus we conclude as follows.

LEMMA 3. The complexity of testing whether G is k-planar with DYN is at most

O(ckn), where c is independent of n.
Next we pass to the one-connected case.
A one-connected graph G is the union of bricks; that is, edges or 2-connected

subgraphs that intersect at cutvertices only. G will have a "treelike" structure; namely,
if a path leaves a brick B through a cutvertex v, the only way the path can return to
B is by crossing v again. Now suppose G- (V, E) has connectivity one; let v be an
arbitrary cutvertex, and write G t_J --o G, where G (q Gk v, for all j k, and each
G-v is nonempty and connected. Let D- D f)G.
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If V D, then v will be covered by some face f. Now we can always embed every
Gi simultaneously so that f is a face of it without requiring more than the minimum
number of faces to cover all of D. Thus, if

k planarity number of G

and

then

ki planarity number of G, for i= 0,..., m (where we cover D),

fc= ., k,-(m- 1),
i=0

and the problem decomposes with v in each D.
Now suppose v D. By not including v in D, we can compute/i and use Y=o

as the number of faces to cover D. If we use D {v} t_J D instead of Di for a given
graph G, we might increase the planarity number of G by 1. However, if we add v
to D and compute the planarity number of G as before, we might actually decrease
the number of faces required to cover D because the graphs G will be able to share
the additional face. Hence, if we try both possibilities (i.e., whether or not to add v
to D), and decompose into a problem for each G, we will certainly solve the original
problem. However, this may create too much work if a brick of G contains too many
cutvertices. Instead we will use an approach inspired by the next lemma.

LEMMA 4.

ki,1 planarity number of G to cover D.
k,2 planarity number of Gi to cover D.

Then
(a) If, for at least one i_> 1, /i,2 k,l, then it is optimal to add v to D.
(b) If, for all >- 1, k,2 k,l + 1, then it is optimal not to add v to D.
Proof. The proof is clear.
Notice that Go is not considered in the lemma.
Next we proceed as follows. Let G be a graph whose k-planarity we want to test;

exactly one brick B of G has been painted red. Let v B be a cutvertex of G. If v D,
then proceed as outlined above. If v D, then (as previously) we form the graphs G,
so that B is contained in Go, and we paint red the brick of G for i-> 1, that contains
v. Next, we solve, in each Gi for i-> 1, the two problems to cover D, and to cover
we then use Lemma 4 to decide whether or not to add v to D. Notice that each graph
Gi contains exactly one red brick. Clearly, repeating this procedure will eventually
reduce the problem in G to at most two separate problems in each brick. Thus the
complexity is again linear.

4. NP-completeness for arbitrary k. In this section we show that the problem of
determining whether a (G, D) pair is k-planar or not is strongly NP-complete when
k is variable. Hence, it is unlikely that a polynomial-time algorithm exists for recognizing
a k-planar graph for arbitrary k.

In order to do this, we define the following decision problem which we call FACE
COVER: "Given a planar graph G (V, E) together with a subset of vertices D_ V
and an integer K, can G be embedded in the plane so that at most K faces are required
to cover all of the vertices in D?" We will show that FACE COVER is strongly
NP-complete even when G is three-connected and so has essentially a unique planar
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embedding, when d 0(n), and when all of the faces of G have bounded length. A
graph G is 3-connected if the removal of any two vertices of G leaves the rest of G
connected. It is well known [Wh] that a 3-connected planar graph has an embedding
which is essentially unique; i.e., all embedding have the same facial structure and differ
only in which face is the outer face.

The reduction will be from VERTEX COVER: "Given a graph G (V, E) and
integer L, is there a subset of vertices W_ V with IWI <= L, such that for every edge
(u, v)E at least one of u or v belongs to W?" VERTEX COVER is strongly
NP-complete for cubic planar graphs [GJS].

THEOREM 5. FACE COVER is strongly NP-complete even when G is 3-connected,
d O(n), and all faces of G have bounded length.

Proof. Consider an instance of VERTEX COVER given by a cubic planar graph
G (V, E) and integer K, where G has no loops or parallel edges and every edge is
contained in exactly two faces. This problem is known to be strongly NP-complete
[GJS].

We obtain an instance of FACE COVER by setting K L and G (V, E) being
the planar dual of G, i.e., place a vertex v V in every face fv of G, and an edge
(u, v) E if faces fu and fv of G share an edge. Subdivide each edge (u, v) E by
adding a vertex x(u, v) and denote the new graph by t (,/). Let D be the set of
vertices x(u, v) for (u, v) E. Given the particular embeddings of G and G, there is
clearly a one-to-one correspondence between vertices in D and edges of G, and
similarly, between faces of G and vertices of G. Thus, there is a one-to-one corre-
spondence between a face cover of (, D) and a vertex cover of G of the same

cardinality.
In general, might have other planar embeddings where a face cover in this new

embedding of 0 does not correspon to any vertex cover in G. To remedy this, we
form the graph G* (V*, E*) from G by adding, inside each face of t, edges to form
a cycle containing all vertices of D in that face, and embed the cycle inside the face.
It is easy to see that the face cover problem on G* is equivalent to the face cover
problem in t. We will show that G* is 3-connected and so this embedding is essentially
unique [Wh] which will complete the proof. To see that G* is three-connected, notice
that in t, all facial cycles consist of precisely three edges. However, these cycles may
not be simple (i.e., triangles) if G has bridges. Nevertheless, in G* all facial cycles
have length three and are simple, in other words G* is triangulated and, thus,
three-connected, since G* is a simple graph.

Finally, note that IDI equals the number of edges of t, which is 0(n). U
(Note: An alternative proof of NP-completeness for the case D V appears in

[FHS].)

5. An exact and an approximate algorithm for fixed embeddings. Consider the
variation of FACE COVER in which we are forced to use a given embedding. That
is, FIXED EMBEDDING FACE COVER (FEFC): "Given an embedded planar graph
G (V, E), an integer k, and a subset D

_
V, can D be covered with at most k faces ?"

Clearly FEFC is NP-complete.
In this section we will present:
(a) A set of transformations for FEFC that allow us to assume that d O(n),

while not increasing the maximum facial length.
(b) An exact algorithm for FEFC that runs in time 2’/-g).
(c) A polynomial-time approximation algorithm for FEFC that is asymptotically

optimal if G has bounded length facial cycles, as is the case in our NP-



COVERING VERTICES BY FACES 67

completeness proof. (Our basic approach is similar to that of [LT] in that we
use the planar separator theorem.)

The following set of transformations can be visualized as simplifying the problem.
Their main objective is to allow us to assume that d O(n) without increasing the
facial cycle length and preserving the value of the optimal solution. These transforma-
tions are crucial for the proof of Theorem 6 presented later.

(1) Every vertex of V-D of degree one is shrunk into its neighbor.
(2) Every facial cycle of length two (resp. one) is shrunk into a single edge (resp.

vertex).
(3) In every face g with at most one vertex in D, all vertices in V-D are shrunk

into a single vertex.
(4) Every vertex v in V- D of degree two, adjacent to vertices u and w, is deleted,

and edges (u, v) and (v, w) are replaced by the edge (u, w).
(5) Any two vertices of V-D that are adjacent are shrunk into a single vertex.
(6) For every loop e (v, v) such that (say) the subgraph contained in the interior

of e has an outer facial cycle consisting of v and vertices of V-D only, e is deleted.
(7) If a vertex v D is contained in a unique face off, then f must appear in any

cover; hence, we delete v, and remove from D all members in f.
This concludes the list of transformations. Clearly, Transformations (1)-(7) can be
applied until no longer possible, in polynomial time, to obtain an equivalent problem.

Theorem 6 given below places a lower bound on the size of D in a loop-free
graph where none of Transformations (1)-(7) can be applied. However, if we apply
(1)-(7) to a graph G, the resulting graph G’ may contain loops. In order to count
vertices of D in G’, we modify it as follows"

(a) Every loop (v, v) with v D or v adjacent to at least three vertices of D is
deleted.

(b) Otherwise, let e (v, v) be a loop, and let x be the only neighbor of v in the
interior of e, with x D. Now, (7) or (2) cannot be applied; hence, the interior
of e contains vertices other than x. But there must be at least one such vertex
w D such that (w, v) can be added while preserving planarity; this is true
because of (a), and the fact that neither (3) nor (6) can be applied. In that
case, (w, v) is added. Now v has three neighbors in D.

It is easy to verify that after applying (a) and (b) to G’, the resulting graph G"
is such that none ofthe transformations (1)-(7) can be applied, and that G" is loop-free.

THEOREM 6. Let G (V, E) be a loop-free planar graph with a fixed embedding,
where vl n and ID[ d, and suppose that none of the Transformations (1)-(7) can be
applied. Then d >= n + 4)/3.

Proof. Notice that every vertex of V-D has degree at least three and is only
adjacent to vertices of D. Suppose that G contains a pair of parallel edges e (u, v) e’,
with say, v V- D. Then the interior region bounded by e and e’ must contain a vertex
w D with w u such that either v and w are adjacent, or the edge (v, w) can be
added to the embedding (in which case we do so). Similar considerations apply to the
exterior of e’.

Now, delete all edges with both endpoints in D, let C be an arbitrary connected
component with t$ vertices and a elements of D. Clearly, C has no facial cycles of
length one or two. The latter follows because if e (u, v)= e’ are a pair of parallel
edges with u D, v V-D, then there exist vertices wl, w2 D adjacent to v, and,,,.located in the interior and exterior of e, this is guaranteed by the previous paragraph.

Consequently, the number of of edges of C satisfies ’ =< 3-6. On the other
hand, if f denotes the number of faces of C, f= k>-3 fk, where fk is the number of
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faces of length k. Since C is bipartite, f3 0. Thus, . 1/2 k kfk >- 2 .k>_4k 2f.
Moreover, -> 3(t-), since for each vertex of C not in D, we count at least three
edges. Hence,

e=3n-x where 6<- x_-<3

By Euler’s formula,

3t$-x
f=2-x+2<2

OF

n+4<x<3d,=

4>__-+-
3 3’

which concludes the proof. [3

We note that the bound in Theorem 6 is best possible.
We now present an exact algorithm for finding the minimum number of faces

required to cover all special vertices of a planar graph given a fixed embedding in
2’/g") time. As in Theorem 7, we may take d 0(n) by the application of appropriate
transformations in the embedded graph. Let G= (V, E), D V, d IDI, and n IV[
be the input. The algorithm proceeds as follows:

(1) Let S be an O(x/-)-separator of G. Write G G1 t.J G2, where G1CI G2 G(S),
the subgraph of (3 induced by S. Let Di be the subset of S contained in Gi.
Write G (V, E), and embed Gi as it appears in (3.

(2) A face f of G that contains vertices of G- S and of (32-S will be called a
boundary face. Ideally, we would like to proceed independently with G and
(32. However, these two graphs interact on the boundary faces. Thus, we
modify G1 (and similarly, G2) so that the boundary face structure is "pre-
served" in a "legal" way. This is attained in two steps.
(i) For every boundary face f, we replace each path off that intersects V1 at

its endpoints with an edge. The resulting graph contains a face f that
corresponds to f; we call f an inherited face. Select an arbitrary added
edge (u, v) off and subdivide it by introducing a grey vertex w(f). Carry
out this transformation for all boundary faces of G; call the resulting
graph G.
Now we are essentially ready to proceed independently with graph G.

The idea is to use the grey vertices to force boundary faces to be used in a
cover: iff is such a face and we change the color of w(f) from grey to black,
this should force us to use f. However, there is a problem. (32 may have several
connected components and the removal of each component could introduce
in G a (possibly large) new face that does not correspond to any face of (3.

We call such a face a gap face. Each gap face is made up of edges added in

(i). We handle this problem as follows.
(ii) In each gap face subdivide every edge by introducing a new white vertex.

Connect all such vertices consecutively as we travel around^ the face with
red edges. Call the resulting graph Ga. Similarly, define (32.
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(3) Write S fq D. Next, for every partition 1 (-J S2 with 1 f’) 2 , and
every subset X of grey vertices, we color X black, the remaining grey vertices
white, and solve the following two face cover problems.
(a) in G1, cover (D1- S) (.J $1 t_J X, with minimum value k(S, X).
(b) In G2, cover (D2,,-S)t.JS2UX, with minimum value k2(S:,X); set

f(,,/2, X)= kl(Sl, X)+ k2(2, x)- El, where Y is the set of inherited
faces used in both covers. Then the minimum cover of D has value
ming,.g:.x f(gl, :, X).

The proof of correctness of the algorithm proceeds as follows.
(1) Consider any face cover of D in G. Then an arbitrary subset of the boundary

faces will be used, and if any vertex of S f’l D is not covered by a boundary
face, then it is either covered by a face of G1 that contains no vertices of
G2-S (an internal face of G), or it is covered by a face of G2 that has no
vertices of G- S (an internal face of G:).

(2) Consider any of the problems on graph G1, with S and X as above. Then,
without loss of generality, none of the faces containing red edges is ever used
in an optimal solution, since the black vertices that any such face may cover
are also covered by an inherited or an internal face. Thus, all vertices of X
are covered by inherited faces; and all vertices of S are either covered by
inherited faces, or by faces of t that are co,pies of internal faces of G
(similarly for G:). Consequently, for each $1, S: and X, we can take the two
optimal solutions on G and G2, respectively, and obtain a face cover of D
in G of cardinality precisely f(S, S., X).

(3) Finally, consider an arbitrary face cover F of D in G. Let Fi be the set of
internal faces of G used in F for 1, 2. Let Z be the set of oundary faces
used in F. Notice that IFI-IF, zI / zl-Izl. A s o, set S, is the set of
vertices of S fq D covered by internal faces of G1, and $2 (S f)D)- gl. Let
X(Z)be the set of grey vertices of tl contained in those inherited faces
corresponding to Z. Then k(,,X(Z))<=[FI.3Z[ for i=1,2, and thus,
k,(S,, X(Z))+ k2(S"2, X(Z))<= [FI+ Izl which implies that f(l, 2, X(Z))
IFI.

This concludes the proof of the correctness of the algorithm.
To derive the complexity of the algorithm, the number of edges and vertices added

to each graph G to obtain is o(Isl). Consequtl G has at most n + O(v/-ff)
vertices. Furthermore, the total number of triples (S, $2, X) is at most 2 (Isl). As a
result, if T(n) is the worst-case complexity of the algorithm, we have T(n)<=
2’/-;)T(n + O(x/-)); from which T(n) _-<2’/-;) is straightforward.

The approximation algorithm is somewhat similar to the exact algorithm, with
the exception that we will use planar separators that produce "equal" size subgraphs.
Let G (V, E) be the input with D_ V. Let S be a "50/50" separator of G. Write
G G1 I,.J G2, where each G V, Ei) is defined as in the exact algorithm. Next, add
edges to each G to obtain the inherited faces, and call the resulting graph G. Notice
that the faces of G1 correspond to the internal faces of G1, boundary faces, and also
(possibly) to a third type of face that corresponds to connected components of G.
(The vertices on these faces are all contained in S.) Proceed similarly with G. Set
D- (Dfq V)-S. Now, suppose we solve the following problems with i- 1, 2:

(,) In G, cover D; let the optimum cover have size k.
Now, by taking the union of the optimum covers we can obtain a cover of D in

G by adding at most ISI faces. Hence, if we denote by k the size of an optimum cover
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of D in G, we have k =< k- + k-2 + Isl. On the other hand, given a cover F for G we can
obtain a cover for 1 and one for : by restricting F appropriately. Hence, [FI>=
k + k-- O(ISI), or Ik-/, + o(Isl)= o().

Our algorithm will not solve the problems on Gi exactly. Rather, we keep
subdividing each graph and modifying the resulting subgraphs until we obtain (on
each branch of the recursion) graphs of size O(log2 n). We solve these problems using
the exact algorithm, and by piecing together their solutions, we will obtain a face cover
of D in G. It is not difficult to verify that the problems produced at the ith recursive
step have at most O(n2-i) vertices. Hence, the total number of recursive levels is at
most T log n- 2 log log n + O(1). Consequently, the total error is, up to a constant,
at most . 2 0 2r/2) 0

i=0

Hence, if G has bounded length facial cycles, and since d 0(n), the relative error
of our approximation algorithm is O(1/log n).

To estimate the complexity of this procedure, notice that the number of problems
to be solved exactly is O(2r) O(n/log n), and each such problem takes time at most
2daT-z) n Ol). The total number of vertices in the recursion tree is also O(2r), and
we conclude that the algorithm runs in polynomial time.

6. Concluding remarks. We have shown that checking k-planarity of graph G with
n vertices D V can be done in linear time for any fixed k. This provides an efficient
recognition algorithm for this class of graphs for which the Steiner tree problem can
be solved in polynomial time [EMV]. We have also shown that if k is not fixed, the
associated decision problem is NP-Complete even if G has essentially a unique
embedding, d 0(n), and all facial cycles have bounded length. We obtain a poly-
nomial-time algorithm for this latter case which is asymptotically optimal.

We note that the work of Robertson and Seymour on Wagner’s conjecture could
be used to check k-planarity for any fixed k in O(n4) time [Se]. However, their
algorithm would not provide an embedding and covering as our algorithm does. It
might be possible to specialize their result to our problem. We leave this as an open
problem.

Appendix A--The three cases of DYN.
(1) Series Case. The formulas for this case are: Fix z and w. Then

F(H, 00zw) min {F(H,, 00z0)+mint {F(H2, 00tw)}, min, {F(H,, 00zt)}

+ F(H2,000w)}.
Similarly,

F(H, 10zw)= min {m,n {F(H,, x’y’zw’)" x’+ y’= 1}

+min {F(H2, x"y"z"w)" x"+ y"<= 1},
z"
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min {F(H, x’y’zw’): x’ + y’ <= 1}

+ min {F(H, x"y"z"w): x"+ y" 1},

min {F(H, x’y’zl): x’+ y’=< 1}

+min {F(Hz, x"y"lw)" x"+y"N 1}}.
All other parameters are computed analogously.

(2) Parallel Case. Fix z and w. Suppose we choose two candidates Hi and Hr as
the "left" and "right" blocks in E(H, xyzw), where, for example, we would use
embeddings E(H, XblZW) and E(Hr, bryzw) for some b, br {0, 1}. Subject to this
specific choice (i.e., l, r, b and br) we show how tO compute the best embedding of
H. Now suppose k l, r. Which embedding should be used for Hk ? Now, if z + w _--> 1,
we must always use E(Hk, X’y’O0) for some x’, y’ (and also, bl=b,.=O). Assume
z W--O.

(a) If F(Hk, OIOO)<--F(Hk, O000)-I, then E(Hk, OIO0) is preferred over
E(Hk, 0000); if the reverse inequality holds, then the opposite choice is
preferred.

(b) E(Hk, 0100) and E(Hk, 1100) are compared in a similar way.
(c) If F(Hk, llO0)<=F(Hk, 0000)-2 then E(Hk, 1100) is preferred; if

F(Hk, 0000) =< F(Hk, 1100) then E(Hk, 0000) is preferred. The only possible
tie occurs precisely when F(Hk, 0000) F(Hk, 1100) + 1. We will represent
the better embedding, in this case, by E(Hk, **00).

Running through all cases (a)-(c) yields the best embedding for Hk, with a possible
tie between (0000) and (1100). We still have to decide how to permute the Hk’s, and
how to rotate each individual Hk. This is done as follows. Assume first that no ties
occurred, and for each Hk with k l, r, we create a binary vector of two entries
corresponding to the best embedding, together with an additional vector (bt, br), where
b and br specify the status of the inside face of H and H, respectively. Now we have
to order these vectors cyclically and rotate them so that the total number of consecutive
vectors (a,/3) followed by (y,)t) with /3 + y_-> 1 is minimum. For example, if the
vectors are (0, 0)(0, 1)(0, 1)(0, 0)(0, 1)(0, 1)(1, 1)(1, 1), the best ordering is
(0, 1)(1, 0)(0, 0)(0, 0)(0, 1)(1, 1)(1, 1)(1, 0) of value 4. In general, is it easy to see that
an optimal arrangement is obtained by putting all (1,1)’s in a string; if there is at least
one (0, 1) put it at one end of the string; if there is another, put it at the other end;
next pair up all remaining (0, 1)’s (at most one will not be paired up), and pair up all
(0, 0)’s. Let nij equal the number of (i,j)’s; the value will be

/Ill --I- 1 if nol O, noo > O,

if no > O,

nll ifno=noo=O.

Now, if a tie occurred in at least one Hk, i.e., n** > O, using a (1, 1) embedding
increases the n count by one but saves one internal face. Therefore, we either make
all (*,*)’s into (1, 1)’s, or we make all of them into (0, O)’s. That is, if n**>O and
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no1 >0 or noo>0, then make all (*,*)’s into (0, 0)’s, and if no1 noo=0, then make
them all into (1, 1)’s.

In this way, we compute the value m(bl, br) of an optimal arrangement to account
for faces between the Hi’s. Let fk(b, br) be the number of internal faces used by each
Hk in the optimal embedding. Thus,

l,r I, bl,br k l,r

The above procedure can be implemented easily in a quadratic amount of work.
We next sketch how to improve on it so that the F(" parameters are obtained in
linear time. Assume that we want to compute F(H, xyO0) (the general case is simpler),
and fix bt and br (there are four cases), without yet fixing H or Hr. We first consider
the case where there are no ties in any of the blocks. Then the quantity m(bl, br) is
well defined. We can also select a "best" block to act as a left end, namely, select k
such that

F(Hk, xblO0) fk(b,, br)

is minimized, where we use the notation given above. Similarly, we can choose a "best"
right block. It is not difficult to show that these blocks should indeed occupy the ends.

We now pass to the case of ties. If either
(i) b+ br_-< 1, or
(ii) no + noo is 0 or at least 3,

Then the ties will always be resolved, and we proceed as in the previous paragraph.
Otherwise, we also try all possible ways of using, as end blocks, the (at most two)
blocks whose best embedding is of type 01 or 00. This only adds a constant number
of additional cases. Hence, this case can indeed be computed in linear time.

(3) Messy Case. Assume we have computed the m.m.b.’s. Let W be an m.m.b.,
with extremes v, w; we want to describe the behavior of W with a small gadget.

Suppose W is an interior m.m.b.; that is, the extremes of W are contained in the
interior of H’. We can compare the possible embeddings of W as follows:

(a) For fixed z and w, we compare each pair (xyzw) and (x’y’zw) precisely as in
case (2). of DYN. For example, if F( W, 1000)-< F(W, 1100), then E( W, 1000)
is preferred over E( W, 1100) (and if the inequalities are reversed, otherwise).
Recall that we have a tie between E( W, 0000) and E( W, 1100) if F( W, 0000)
1 + F( W, 1100).

(b) If F( W, 1000) >- F( W, OOzw) with z + w >_- 1, then E( W, OOzw) is preferred over
E( W, 1000). The reason for this is that if in an optimal embedding of H we
use E(W, 1000), we can instead use E(W, OOzw) and keep everything else
fixed to obtain a feasible embedding that must also be optimal.

(c) If F( W, 0000) =< F( W, 0011) then E( W, 0000) is preferred; if F( W, 0011) + 1 -<

F( W, 0000) then E( W, 0011) is preferred.
(d) IfF(W, ll00)+2=<F(W, 0011) then E(W, 1100) is preferred; ifF(W, 0011)-<

F(W, 1100) then E(W, 0011) is preferred, with a tie if F(W, 1100)+I=
F(W, 0011).

(e) In a similar way, we compare E(W, 1100) with E(W, OOzw) where z+ w= 1,
with a tie if F( W, 1100)+ 1 F( W, OOzw). We may even have a three way tie
between E( W, 1100), E( W, 0010) and E( W, 0001).

Now suppose we are able to select a best embedding E(W, x*y*z*w*); that is,
there are no ties for best. Then we replace W with the appropriate graph in Table 1
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TABLE
Replacement graphs with no ties.

oo oo

(tooo)

oo)

(0014) I v

00,1 0 v
000

o
i
v

W

(where black vertices represent vertices of D). Let be the new graph. It is easy to

prove that F(I?-I, xyzw)+ F(W, x*y*z*w*)= F(H, xyzw). Thus, we solve the problem
on H first and then add the weight F( W, x*y*z*w*).

By induction, we can replace any set of interior m.m.b.’s (with no ties for best
embedding) whenever they have no common extremes. If, on the other hand, say
Wl, Wk have a common extreme v D, then: (i) if the best embedding for each
Wk prescribes that v not be covered, then leave v uncovered in each replacement
graph, and (ii) if, in at least one W the best embedding covers v, then use the same
replacement for each W, except that v is removed from D.

A few complications arise if a particular interior m.m.b. W has ties for best
embeddings. The list of all po.ssible ties is given here:

(T1) F( W, 0000) F( W, 1100) + 1,

(T2) F( W, 0011) F( W, 1100) + 1,

(T3) F( W, 1100) + 1 F( W, 0010),

(T4) F(W, 1100)+ 1 F(W, 0001),

(TS) F(W, 1100) + 1 F(W, 0010) F(W, 0001),

(T6) F( W, 0010)= F( W, 0001).

Table 2 contains the replacement graph to be used for each tie, together with the
appropriate weight to be added after solving. It is not difficult to verify ,that these are
all correct; here we will do so for the most complicated case (T2). Let H be obtained
from H by replacing W with the corresponding graph in case (T2). Now in any optimal
embedding E(H, xyzw), at least one internal face of the replacement graph will be
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CASE

T’I

T2

T3

T4

T5

TABLE 2
Replacement graphs with ties.

GRAPH

V

V

V

V

V

T6 i v=w

WEIGHT

F W, 1lO0)

F (w, ’11OO)-I

F (W, 400)-I

F (W, I00)-I

F(W, 00)

F(W, 0010

NOTICE THAT ALL WEIGHTS ARE NONNEGATIVE

used. It is easy to see that, without loss of generality, it is either the face containing
v and w (but none of the other faces), or the two other faces (but not the one containing
v and w). Given our choice for the weight, F( W, 1100) 1, this gives the correct result.

Thus, we can replace interior m.m.b.’s with small graphs, with the small caveat
concerning extremes that are common to several m.m.b.’s as given before. Noninterior
m.m.b.’s are dealt with similarly:

(i) Suppose we want to compute F(H, 0000); then we replace every m.m.b, using
the above rules.

(ii) Suppose we are trying to compute F(H, OOzw) where z+w->l; say,
F(H, 0010) (i.e., ul is not covered). Then we proceed exactly as in (i), except that now
if an m.m.b. W contains ul as an extreme, we use the best embedding for W of the
form E( W, xyl w), and all faces of the resulting graph that are incident on ul are
rejected. (There is a small wrinkle if there is an m.m.b. W with extremes u and
v, v E D, and such that v is an extreme of only one other m.m.b., W2. In this case we
may have to force v to be covered by W or W2. Since there are at most two vertices
such as v, this yields only four or fewer problems.)

In cases (i) and (ii), we use Algorithm XTND in the resulting graph after the
replacement. If XTND finds a cover of cardinality k or less, then we add the sum of
the weights of the replacement graphs to the cardinality of a minimum cover of/Q. If,
on the other hand, XTND finds that has no covers of cardinality k or less, then
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the corresponding embedding E(H, 0000) or E(H, 0010) should not be considered.
(Similarly with F(H, 0001) and F(H, 0011).)

(iii) The final case occurs for F(H, xyzw) where x + z => 1; say, we want to com-
pute F(H, 10zw). We proceed in two stages. Let.. Pl and P2 be the two paths from ul
to u2 in the outer face of H’. Then we obtain H as for computing F(H, OOzw), and
we remove from D all vertices in the segment of the outer face of H corresponding
to Pl. We then apply XTND to this graph, add the weights of the replacement graphs
to the returned cardinality, and denote the obtained quantity by m(p). Similarly
compute m(p2). Then m(H, z, w)=min (m(p),m(p)) is the minimum number of
faces needed to cover D H (with the exception of ul and u2 as indicated by z and
w) where we do not require that we cover one of the segments of the outer face.

Now if m(H, z, w) < F(H, OOzw), then we are done; set m(H, z, w) F(H, 10zw).
If m(H, z, w) F(H, OOzw), then we proceed to the second stage. Let W be an arbitrary
m.m.b, whose corresponding edge in H’ is contained in p or p’. Let (W) be the
graph obtained from H by replacing W with the best embedding of the form
E( W, ly00), and all other m.m.b’s replaced with graphs as for cases (i) and (ii).

Notice that the replacement graph for W will contain a vertex of D in the outer
face of H(W) (see Table 1); call this vertex w’, and set f(W) to be the min cardinality
of face cover of D f’)H(W), with all faces incident to w’ rejected plus weight of
replacement graphs. Then minwf(W) finds the best embedding of H that does not
cover at least one vertex (which is not an extreme of an m.m.b.) in the outer face. In
a similar way, we compute all quantities g(v), where v D is extreme of an m.m.b.
in the outer face of H’ that we want not to cover. Then min {minwf(W), minv g(v)}
is the quantity F(H, 1000) we seek.

There is one shortcut that we can take to improve the algorithm above. Suppose
there are at least k possible graphs W for which F(W, ly00)-< k that can be used to
compute minwf(W). Now, the fact that we have reached Stage 2 implies that
F(H, 10zw)=> F(H, OOzw). However, any internal face of H can cover at most one of
the vertices of D counted above; otherwise, H’ would contain a cutset of two vertices
in one of the segments pl and p, which is impossible. Therefore, F(H, OOzw)> k, and
we can avoid Stage 2 altogether. Similar considerations apply towards computing
minv g(v). Consequently, we can assume that each of the minimums in Stage 2 at most
has O(k) arguments.
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